Mass finishing and shot blasting - systems for post processing of AM parts

Highly adaptable finishing methods for work pieces produced with additive manufacturing

In recent years the technical characteristics of additive manufacturing (also called “3D printing”), including its production technologies, and the production units and materials, have undergone rapid development. However, post-processing of additive manufactured parts still poses somewhat of a technical challenge. In many cases mass finishing and shot blasting allow creating the required surface finishes on AM work pieces in a cost-efficient manner – as long as these finishing methods are adapted to the unique requirements of additive manufacturing.

Additive manufacturing has long outgrown the stage of just being a prototyping technology and is now on the verge of becoming a system for low volume production of standard products. This unique manufacturing method is highly effective when it comes to the customization of work pieces and the flexible and fast production of small lots of geometrically complex components. It is equally effective with metallic materials, plastic, composite materials, ceramic or glass; in fact, the raw material selection has more or less become open ended. Post-production operations like the removal of support structures, surface smoothing, edge radiusing, high gloss polishing and surface preparation - all require consideration in every single process stage for achieving acceptable surface finishes. Factors to be taken into account are the actual AM technology used for creating the parts, the technical characteristics of the additive manufactured parts in the application as well as the technical specifications, the required work piece positioning in the production chamber.

Mass finishing - a surface treatment technology for many applications

Different methods for finishing the surface of additive manufactured parts are available. Because it offers wide treatment possibilities, mass finishing is the preferred surface treatment method for AM parts made from plastics or metal. Depending on the work piece shape and size as well as the technical specifications, the required surface finishes can be achieved with single piece or batch processing of multiple work pieces. In any case, it is important to take the required surface finishes, already accounted during the design process. Rössler, a global leader in the field of shot blasting and mass finishing, including the machines themselves, processing media and compounds, has been working on the surface treatment of AM parts for several years. The company is not only partnering with renowned companies in this new industry but also cooperates with various research organizations. The Rössler test centers around the world have successfully developed finishing processes for different work pieces from different industries. These include, for example, the consistent and cost efficient surface finishing of cranial plates using a centrifugal disk finishing machine. During the 3-stage process, precisely defined surface areas on these implants undergo a surface polishing and smoothing operation. Likewise, for the aerospace industry a method for finishing AM produced turbine blades was developed. Other examples of successful finishing applications for AM parts are the SHK lever on E-bikes, the mold core of injection molding tools, heat exchangers and sensor housings.

Investments in production and R&D for media and compounds

Further developments for the optimization of mass finishing processes

To meet the increasing demand for media and compounds Rössler is expanding its consumables production at its Untermerzbach location. Innovative developments in this field allow for the further optimization of various mass finishing processes.

When it comes to mass finishing Rössler is not only the global leader in equipment technologies, but with its media and compound program, it also sets new standards for process safety and cost efficiency. Thanks to their exceptionally high quality the demand for Rössler media and compounds has drastically increased.

Significant increase of the media production

In October 2017 we expanded the capacity of our plastic media production with a new production line. In spring 2018 we will commission another line that is equipped with the latest technological features. This will allow us to produce altogether total of seven production lines. To meet the increased demand we will also expand our production capacity for ceramic media in a brand new building. This new facility is scheduled to go into operation in the first quarter of 2019.

New media developments are expanding the range of applications

To open new fields in mass finishing technology, we are continuously adding new media types to our ceramic and plastic media portfolio, which already comprises of more than 15,000 different products. For example, this includes product and process development for immersion-free finishing of work pieces that have already undergone a final machining stage. To date this was not possible. Another important media type will allow the treatment of acetate-based plastic products without any embedded media grains in the work piece surface. This material is used for making ultra light, comfortable spectacle frames, for which mass finishing processes make the perfect finishing touch. Until now these media containing formaldehyde had to be utilized for creating finely structured, matte finishes with a bright surface. Rössler succeeded in developing a media type without formaldehyde that will achieve equally good surface finishes.

Improved cost efficiency with recycling compounds

Compounds fulfill important tasks during the mass finishing process. These include the discharge of contaminants like dirt and oil as well as metal and media fines from the mass finishing process. The cleaning of the contaminated process water takes place in centrifugal filters. The development of dedicated compounds that can be very easily back into the finishing process along with high performance centrifuges ensures that only solid particles and oil are removed from the process water. The compound remains in the process water and can be re-used without impairment of its functionality. Depending on the application, the uptime of the process water can range from four weeks to up to a whole year. This helps reduce the compound consumption, not only resulting in lower operating costs but also producing an eco-friendly environment. In the meantime recycling compounds represent the majority of our compound range. This includes liquid compounds as well as printing and polishing pastes containing abrasives. To facilitate their use we offer these pastes in powder form. They are also available as pellets allowing recycling and easy replenishment with special dosing pumps.

Knowledge center supports customers

Maintaining stable finishing processes, finding the right finishing method for new products, replacing products that must comply with REACH or GHS guidelines, auditing finishing processes for their cost efficiency – these are questions customers can present to our Rössler “knowledge center”. We will provide answers in close cooperation with our test lab and our media and compound specialists.

Our goal is to provide the best possible service to our customers. That is why we are investing in a modern compound production facility in a new building at our Untermerzbach location. The new facility allows us to increase our production capacity and automate the entire compound production. This includes a fully automatic mixing and filling station but also extends to warehousing and logistics. With these investments in media and compound production Rössler is taking further steps to optimize its customer service and provide the basis for further growth.

Knowledge center supports customers

Maintaining stable finishing processes, finding the right finishing method for new products, replacing products that must comply with REACH or GHS guidelines, auditing finishing processes for their cost efficiency – these are questions customers can present to our Rössler “knowledge center”. We will provide answers in close cooperation with our test lab and our media and compound specialists.

Our goal is to provide the best possible service to our customers. That is why we are investing in a modern compound production facility in a new building at our Untermerzbach location. The new facility allows us to increase our production capacity and automate the entire compound production. This includes a fully automatic mixing and filling station but also extends to warehousing and logistics. With these investments in media and compound production Rössler is taking further steps to optimize its customer service and provide the basis for further growth.

Knowledge center supports customers

Maintaining stable finishing processes, finding the right finishing method for new products, replacing products that must comply with REACH or GHS guidelines, auditing finishing processes for their cost efficiency – these are questions customers can present to our Rössler “knowledge center”. We will provide answers in close cooperation with our test lab and our media and compound specialists.

Our goal is to provide the best possible service to our customers. That is why we are investing in a modern compound production facility in a new building at our Untermerzbach location. The new facility allows us to increase our production capacity and automate the entire compound production. This includes a fully automatic mixing and filling station but also extends to warehousing and logistics. With these investments in media and compound production Rössler is taking further steps to optimize its customer service and provide the basis for further growth.
Optimally interlinked mass finishing and cleaning systems

Perfectly clean work pieces in half the time

With an integrated solution for de-oiling, mass finishing and deep cleaning of stamped and formed parts, VIA OberflächenTechnik not only meets the most demanding cleanliness specifications but also achieves significant cycle time reductions and cost savings. At the same time the new system allows a high degree of operational flexibility.

Mass finishing and cleaning equipment from a single source

When the company received a large order from an automotive supplier for volume cleaning of clutch carriers, for which VIA had done extensive cleaning trials with pilot production runs, the existing cleaning and mass finishing capacities were no longer sufficient and had to be further expanded. Kai Lechner, project manager at VIA, explains: “Right from the project start it was clear that we would purchase our new mass finishing system from Rösler. We were not so certain about buying the de-oiling stage, since Rösler is the leading work piece cleaning specialists in Europe. This type of work piece cleaning is very demanding, as the noise level and other emissions have to be kept to a minimum.”

In order to meet the high safety standards required in the aerospace industry, all equipment functions are continuously monitored and controlled. This includes the movement of the work piece handling system as well as the correct positioning of the work pieces in the workstation clamping system. Any deviations will cause the automatic stop of the machine. To make certain that the process water is safely evacuated from the work bowl, the draining screens in the work bowl bottom are not only flushed with water but also regularly cleaned with compressed air. Maintenance is made easy with a central lubrication system that automatically supplies the guides and work stations with grease according to preset time intervals.

Interlinked process with high operational flexibility

For the de-oiling stage the clutch carriers are manually placed on the feeding conveyor of the compact spray-rinse washing machine at a 6-second cycle. They pass through two separate cleaning zones and a blow-off station. To ensure a long uptime of the cleaning liquid the system is equipped with filtration units and a coalescence separator. Since only one medium is utilized for the various cleaning processes, and since the work pieces are directly transferred into the mass finishing machine, a drying step was not necessary. Deturbing and edge-radiusing takes place in the linear continuous flow vibrator, type R 650/6600 DA. The process water is continuously cleansed in a 2,100 centrifuge with fully automatic sludge discharge. After passing through the vibratory separation unit of the R 650/6600 DA vibrator the clutch carriers are transferred to the feeding conveyor of the deep cleaning unit. To ensure that the work pieces meet the stringent cleanliness requirements of ‘no metallic particles > 600 µm’, the carriers are manually positioned prior to entering the deep cleaning unit. They are then passed through the zones cleaning, rinsing and passivation. The parts are sprayed with cleaning medium from above and below. The pressure and volume of the water flow from the upper and lower spray nozzles can be separately adjusted, and the various parameters can be stored as individual programs in the PLC for the finishing process. Finally, the work pieces are passed through the drying zone, rotary speed and covered distance were translated to the larger, new machine in a manner so that no changes had to be made to the existing finishing process. For unloading of the finished work pieces the carousel moves into a position that allows the operator to spray-rinse them with water and then remove them from the workstation.

Large cost savings

Compared to the cleaning process for the pilot production with its numerous manual operations, the new system cuts the processing time in half. Concludes Kai Lechner: “A big advantage is that after an unplanned delivery stop by the customer we can resume production much more quickly and can supply the OEM with cleansed work pieces in extremely short lead times. The interlinked equipment concept also yielded considerable cost savings. Lastly, the working environment for the employees could be greatly improved: They must no longer move the part bins to spray-rinse them with water and then remove them from the workstation and set up the new workpiece in the workstation. Any deviations will cause the automatic stop of the machine. To make certain that the process water is safely evacuated from the work bowl, the draining screens in the work bowl bottom are not only flushed with water but also regularly cleaned with compressed air. Maintenance is made easy with a central lubrication system that automatically supplies the guides and work stations with grease according to preset time intervals.

Innovative drag finishing system for aerospace applications

Perfect surface finishes for large and small gear components

When designing a new helicopter model, Airbus had to find a solution for finishing large gear components. For this challenging task Rösler developed an innovative drag finishing system with automatic work piece clamping and a clever work piece handling system. Airbus has been using a Rösler drag finishing system for treating helicopter gear components for quite a few years. So it was only natural that this renowned aerospace company turned to Rösler to supply another drag finishing machine for finishing larger gear components used in a new helicopter model. In addition, with the new equipment the manufacturing capacity for current helicopter models needed to be expanded. Around 35 different work pieces made from special high performance steel alloys with diameters from 40 to 600 mm and weights of up to 75 kg must be processed in the new drag finisher.

Newly designed, flexible drag finishing system

Based on numerous processing trials in Rösler’s test center the company developed an entirely new drag finishing concept that meets all customer requirements. With work bowl dimensions of 1,700 (H) x 2,600 (Ø) mm this new machine is one of the largest ever built! To allow the operator easy, ergonomic access to the work stations the machine was placed in a foundation pit. Three 9.6 kW vibratory motors mounted to the sidewall of the work bowl ensure that the processing media in the work bowl, weighing about 6.7 metric tons, is thoroughly mixed in between process cycles. A crane placed behind the machine allows easy and quick filling of media into the work bowl. Worn media that has become too small is discharged through screws in the work bowl bottom. A level indicator shows the operator when to add new media, which is done manually. A 2,100 centrifuge with fully automatic sludge discharge cleans the process water, with a timer controlling the automatic compound replenishment.

The rotating carousel (spinnery) is equipped with 16 work stations with independent drive units. The workstations can be shifted to form a circular or larger circle, and their angle can be adjusted. This allows the simultaneous processing of two large and four small gear components.

Handling system and automatic clamping facilitate work piece handling

Since some of the work pieces are quite heavy, they are loaded/unloaded with a mechanical handling system. The operator guides the handling system holding one single work piece in a precisely defined position to the workstation. After the work piece has been mounted to the station, it is automatically clamped. Smaller gear components are mounted manually. Once the mounting operation is completed, the operator selects one out of 100 different, work piece specific treatment programs stored in the PLC to start the finishing cycle. The shape and size of the specially developed circular RCP processing media ensures that all work areas in the gear components are reached for creating an absolutely even surface finish and reducing the surface roughness readings from R a 0.25 - 0.4 µm down to R a 0.12 µm. Based on the cycle times in the existing drag finishing system the process parameters like circular orbit, rotary speed and covered distance were translated to the larger, new machine in a manner so that no changes had to be made to the existing finishing process. For unloading of the finished work pieces the carousel moves into a position that allows the operator to spray-rinse them with water and then remove them from the workstation.

Continuous monitoring ensures absolute process safety

In order to meet the high safety standards required in the aerospace industry, all equipment functions are continuously monitored and controlled. This includes the movement of the work piece handling system as well as the correct positioning of the work pieces in the workstation clamping system. Any deviations will cause the automatic stop of the machine. To make certain that the process water is safely evacuated from the work bowl, the draining screens in the work bowl bottom are not only flushed with water but also regularly cleaned with compressed air. Maintenance is made easy with a central lubrication system that automatically supplies the guides and work stations with grease according to preset time intervals.
Coin blanks finishing center – compact plug-and-play solution for processing blanks

Fully automatic operation for perfectly polished coin blanks

With the compact coin blanks finishing center Rösler has developed an innovative processing system for coin blanks, which meets the requirements of Industry 4.0. It allows the fully automatic, efficient and impermeation-free finishing of different types of blanks with a maximum of process safety.

The new coin blanks finishing center from Rösler allows a user-friendly processing irrespective of whether the blanks are made from precious or other metals, or whether they are intended for coin collectors, memorial coins or circulation coins. The work bowl, equipped with noise protection, the system controls, the compact crawling unit, the injection unit with the injection and suction unit, and the classification station are all integrated into the skillfully designed, compact enclosure of this innovative plug-and-play system. Special electronic interface functions allow remote communication with the finishing center, which can be directly linked to a client PC, for example, to a hot line service. The 3D control bowl for blanks and an included storage device for all process stages and system components are displayed in real-time on a large touch screen providing complete process overview. This makes the coin blanks finishing center a high-value, ergonomic work station for the operator, giving them complete visual control of all process stages and the possibility to quickly react to any abnormal events that might occur during the process.

Fully automatic operation that can be easily adapted to specific coin blanks

The system PLC allows for storing of around 100 different, product-specific processing programs, which, of course, also includes the timing for the separation stage. Once the work bowl is loaded with coin blanks and the machine, the program starts automatically.

To ensure gentle separation of the finished work pieces from the processing media, the work bowl is directly connected to the vibratory screening unit. This allows the mix of finished coin blanks and media to slide onto the screening unit and without any hazardous slip height whatsoever, allowing the coin blanks to stay embedded in the media all the way to the screen. Even extremely delicate precious metal coin blanks can be separated without any risk. Of course, the separation unit can be equipped with a spra-sieve unit for cleaning the finished blanks prior to drying. Underbase media that no longer meets the process requirements is automatically discharged during the vibratory screening cycle. When it comes to easy, time-saving maintenance, the coin blanks finishing center is equally impressive. All critical system components for example, pumps, are easily accessible through access doors. Direct access to all electronic interfaces and separation unit is possible, allowing the coin blanks to stay embedded in the separated process liquid.

The new coin blanks finishing center with its modern design was first introduced to the public at the World Money Fair 2017 in Berlin, where it drew a lot of attention. The acquisition of the shipyard in Turku in 2014 was a strong statement of intent. Especially when one considers that this acquisition coincided with substantial investments in state-of-the-art technologies and the establishment of a new shot blast center in the existing Rüsselheim facility. The shipyard in Turku included a preservation line with leaching stations for bulb flat steel, straight flat steel profiles and steel plates, all designed and built by Rösler. A key factor in the customer's decision to go with the Rösler concept was the high productivity and reliability of the preservation line. This was further reinforced by the high flexibility of the system and the wide variety of different profile types that can be processed on this system. The Rüsselheim plant therefore offers a perfect balance between high productivity and process adaptability.

Follow-up purchase order from the Mercury Werft shipyard

The world’s largest preservation line in the ship building industry goes to Finland

Three years after the commissioning of a preservation line at ND Coatings, a strategic partner of the Mercury Werft shipyard in the German town of Papenburg, Rösler has now delivered a second line for the Mercury Werft shipyard in Turku, Finland. This is the largest equipment project ever undertaken by Rösler.

The steel plates, stored in a roof-covered outdoor area, can be up to 100 mm (4”) thick, 3,300 mm (130”) wide, and up to 800 mm (30”) long. They are picked up by a magnetic portal crane and placed in a centered position on the load station of the roller conveyor, where the parts are preheated by the transport line in the main heating area. If the plate size is not dimensioned for the subsequent leveling system at a speed of 30 m (100 feet) per minute, faulty profiles are immediately issued from the system. The profiles within specs are combined into batches in the subsequent batching station with batch widths of up to 3,300 mm (126’’).

Coating with a minimum of overspray and solvent recovery

The air linear vibratory cloth drier for stain-free drying) and can be directly linked to a drier (for example, to a hot air drier). The 3D control bowl for blanks and an included storage device for all process stages and system components are displayed in real-time on a large touch screen providing complete process overview. This makes the coin blanks finishing center a high-value, ergonomic work station for the operator, giving them complete visual control of all process stages and the possibility to quickly react to any abnormal events that might occur during the process.

New compact centrifuge: Process water cleaning for low sludge loads

The high quality and eco-friendly alternative to settlement tanks

The new compact centrifuge RZ 60 M 14-KB complements the Rösler centrifuge program at the lower end of the capacity range. It is a plug-and-play unit that allows high quality cleaning of process liquids with low sludge loads and is the ideal replacement for settlement tanks.

When it comes to the cleaning of process liquids from mass finishing and other surface finishing applications Rösler’s centrifuge technology offers innovative separation rates and cost efficiency. However, for applications with low sludge volume, the standard centrifuge types, 2 Z 80 and 2 Z 1000 are frequently oversized. That is why in applications with somewhat lower quality requirements customers often work with settlement tanks. However, when faced with higher quality standards the settlement method is totally inadequate. For such applications Rösler developed the mobile compact centrifuge RZ 60 M 14-KB. This automatic, 2-phase centrifuge was designed as a plug-and-play system. With a drum speed of 4,000 RPM, it offers effective separation capability for the separation of solids and sludge.

In the larger Audit centrifuges, a solution for automatic depletion of settleables, trial and clean up are fed into the centrifuge. The plate is made with a spray gun from above and below the work pieces. To minimize overspray, the spray guns are controlled by a work piece recognition and displacement measurement system. The solvent used for rinsing and cleaning is conditioned and recovered in a processing plant allowing the recovery and recycling of 98% of the material. The drier was designed to ensure fast and optimum curing of the paint. It is equipped with gas burners and recirculation nozzles at the top and bottom of the cabin. In order to stop the plates and profiles fast, safety devices are positioned at various unloading stations for the removal of water and other debris followed by a pre-heating stage. From there they enter the RBB 355M roller shot blast machine at an average speed of up to 16 feet per minute. The blast machine is equipped with eight (8) high performance blast stations and a Fluttmas Gamma 400, with an installed drive power of 37 kW each. To minimize the wear rate and facilitate maintenance, the blast chamber, fabricated from manganese steel, is lined with over-lapping, easy to replace manganese steel plates. After the removal of residual blast media in a brush- and blow-off station the work pieces undergo a final processing.

The first joint presentation of the Partners 4 Steel cooperation was a success. The Partners 4 Steel partnership combines the core competencies of the steel specialists Behringer and Vernet-Behringer, effective plug-and-play unit allows high quality cleaning of process liquids with low sludge loads and is the ideal replacement for settlement tanks.

To allow for the channeling of shot blasted batches of finished component all process parameter are reported back to the control station. The plate is loaded on the loading station of the roller conveyor, where the parts are preheated by the transport line in the main heating area. The first stage of the plate is preheated by a magnetic portal crane and placed in a centered position on the load station of the roller conveyor. The parts are subsequently utulized to move the parts through the system, they may also be covered with sludge and ice. Seven work pieces are combined into a single batch on the transport system and are passed through the cleaning station. preheater for the king - if required - at a speed of 3 m (10 feet) per minute. In a subsequent stage the work pieces undergo a blast cleaning process at a speed of 30 m (100 feet) per minute. Faulty profiles are immediately issued from the system. The profiles within specs are combined into batches in the subsequent batching station with batch widths of up to 3,300 mm (126’’).
Deburring and blast cleaning of castings with eight Rösler shot blast machines
Automated post treatment of castings as a specialized service

Among other machines a renowned industrial job shop is using eight Rösler shot blast machines for the post treatment of castings made from different materials. This allows the company to process high work piece volumes as well as small lots of various castings.

For the cleaning and surface profiling of, for example, turbine casings made from chrome-nickel alloys, housings made from aluminum and magnesium as well as turbine casings made from different materials. This allows the company to process high work piece volumes as well as small lots of various castings.

Flexible shot blast solution for a variety of steel weldments

Perfect blast cleaning is a pre-condition for coating components that must withstand severe ambient conditions. For this reason the Dutch equipment manufacturer Delwi Groenink increased its manufacturing capabilities with a new continuous feed spinner hanger blast machine for various steel weldments.

Dele Groenink’s customers in Enschede, Netherlands, are mainly active in the fitting, offshore and transportation sector. The company designs and produces, among other products, placement systems for containers, for example container pads. Until now the pre-treatment of these items, i.e. manual shot blasting and painting, was done externally at various job shops, which involved complex logistics and was rather time consuming. To accelerate the manufacturing process and increase flexibility, the company decided to bring these processes in-house and take over the job shops including their staff. To further optimize the shot blasting operation, which so far had been done manually, Delwi Groenink invested in a modern shot blasting machine, which was placed in a new building adjacent to the painting facility.

Conclusive shot blasting trials and a convincing equipment concept

Key factors in the decision for the continuous feed spinner hanger blast machine (RHBG 27/32-K) were the results of shot blasting trials with the customer’s components, the success of similar Rösler systems currently operating in the field and, last but not least, the Rösler technical service in the Benelux countries. The machine is designed for continuous processing of small components and batches of multiple work pieces with dimensions of up to 2,600 x 3,100 x 11,000 mm (H x W x L). The blast chamber is manufactured from manganese steel. In addition, in areas exposed to the blast stream, it is protected with easy to exchange, gap-free manganese liners. The blast cabinet is equipped with 16 turbines, type Gamma 400 G, each with an installed power of 11 kW, generating the required high blasting intensity. They are arranged vertically in two rows on the left and right wall of the blast chamber, with the two rows being somewhat offset from each other. The turbines throw around 2,240 kg of blast media per minute ensuring excellent blast coverage of all surface areas. The special “Y” design of the throwing blades and the optimized media transfer in these Rösler high performance turbines allow a highly fluidized media movement with little or no turbulence. The resulting higher throwing and impact speeds, compared to conventional turbines of similar size, produce a 15 to 20 % higher blast performance. The blasting efficiency is further improved by the concentrated blast pattern. Moreover, both sides of the throwing blades can be utilised resulting in a doubling of the uptime of the throwing blades. All of these technical features, along with the fact that the blades can be exchanged within only seven minutes, convinced the customer.

Economically, fully automatic processing of large work piece volumes

IDS is able to process very complex work pieces for the automotive deburring and blast cleaning of casting housings made from aluminum and magnesium as well as these castings are made from chrome-nickel alloys. For the cleaning and surface profiling of, for example, turbine casings made from different materials. This allows the company to process high work piece volumes as well as small lots of various castings.

Increased manufacturing depth by automatic shot blasting and painting

Economically, fully automatic processing of large work piece volumes

IDS is able to process very complex work pieces for the automotive deburring and blast cleaning of casting housings made from aluminum and magnesium as well as these castings are made from chrome-nickel alloys. For the cleaning and surface profiling of, for example, turbine casings made from different materials. This allows the company to process high work piece volumes as well as small lots of various castings.

Compressed air system for blast cleaning of internal passages

For the automatic blast cleaning of internal passages of components like transmission housings, the customer is using an air blast machine allowing the simultaneous processing of two parts. A robot places the castings in the blast chamber and rotates them during the shot blast process. After selection of the work piece specific treatment program stored in the system PLC, blast lances clean the internal surface areas at a pre-determined speed and stop at the programmed end point. At this moment the flow of blast media also stops. During the return trip of the lance to its original position a blow-off system removes residual blast media so that the finished parts can be unloaded without any additional cleaning operation. Besides these automatic shot blast machines IDS has also two blast cabinets. They are used for jobs that require a manual blast cleaning operation or for particularly complex work pieces requiring a touch-up step after passing through the automatic shot blast machines.

Conclusive shot blasting trials and a convincing equipment concept

Key factors in the decision for the continuous feed spinner hanger blast machine (RHBG 27/32-K) were the results of shot blasting trials with the customer’s components, the success of similar Rösler systems currently operating in the field and, last but not least, the Rösler technical service in the Benelux countries. The machine is designed for continuous processing of small components and batches of multiple work pieces with dimensions of up to 2,600 x 3,100 x 11,000 mm (H x W x L). The blast chamber is manufactured from manganese steel. In addition, in areas exposed to the blast stream, it is protected with easy to exchange, gap-free manganese liners. 16 turbines, type Gamma 400 G, each with an installed power of 11 kW, generate the required high blasting intensity. They are arranged vertically in two rows on the left and right wall of the blast chamber, with the two rows being somewhat offset from each other. The turbines throw around 2,240 kg of blast media per minute ensuring excellent blast coverage of all surface areas. The special “Y” design of the throwing blades and the optimized media transfer in these Rösler high performance turbines allow a highly fluidized media movement with little or no turbulence. The resulting higher throwing and impact speeds, compared to conventional turbines of similar size, produce a 15 to 20 % higher blast performance. The blasting efficiency is further improved by the concentrated blast pattern. Moreover, both sides of the throwing blades can be utilised resulting in a doubling of the uptime of the throwing blades. All of these technical features, along with the fact that the blades can be exchanged within only seven minutes, convinced the customer.

Economically, fully automatic processing of large work piece volumes

IDS is able to process very complex work pieces for the automotive deburring and blast cleaning of casting housings made from aluminum and magnesium as well as these castings are made from chrome-nickel alloys. For the cleaning and surface profiling of, for example, turbine casings made from different materials. This allows the company to process high work piece volumes as well as small lots of various castings.

Compressed air system for blast cleaning of internal passages

For the automatic blast cleaning of internal passages of components like transmission housings, the customer is using an air blast machine allowing the simultaneous processing of two parts. A robot places the castings in the blast chamber and rotates them during the shot blast process. After selection of the work piece specific treatment program stored in the system PLC, blast lances clean the internal surface areas at a pre-determined speed and stop at the programmed end point. At this moment the flow of blast media also stops. During the return trip of the lance to its original position a blow-off system removes residual blast media so that the finished parts can be unloaded without any additional cleaning operation. Besides these automatic shot blast machines IDS has also two blast cabinets. They are used for jobs that require a manual blast cleaning operation or for particularly complex work pieces requiring a touch-up step after passing through the automatic shot blast machines.

Conclusive shot blasting trials and a convincing equipment concept

Key factors in the decision for the continuous feed spinner hanger blast machine (RHBG 27/32-K) were the results of shot blasting trials with the customer’s components, the success of similar Rösler systems currently operating in the field and, last but not least, the Rösler technical service in the Benelux countries. The machine is designed for continuous processing of small components and batches of multiple work pieces with dimensions of up to 2,600 x 3,100 x 11,000 mm (H x W x L). The blast chamber is manufactured from manganese steel. In addition, in areas exposed to the blast stream, it is protected with easy to exchange, gap-free manganese liners. 16 turbines, type Gamma 400 G, each with an installed power of 11 kW, generate the required high blasting intensity. They are arranged vertically in two rows on the left and right wall of the blast chamber, with the two rows being somewhat offset from each other. The turbines throw around 2,240 kg of blast media per minute ensuring excellent blast coverage of all surface areas. The special “Y” design of the throwing blades and the optimized media transfer in these Rösler high performance turbines allow a highly fluidized media movement with little or no turbulence. The resulting higher throwing and impact speeds, compared to conventional turbines of similar size, produce a 15 to 20 % higher blast performance. The blasting efficiency is further improved by the concentrated blast pattern. Moreover, both sides of the throwing blades can be utilised resulting in a doubling of the uptime of the throwing blades. All of these technical features, along with the fact that the blades can be exchanged within only seven minutes, convinced the customer.
Rösler presents itself in new corporate image

Rösler starts out 2018 with a completely revamped design of its exhibition booth. The colors of the new booth are based on the recently developed corporate design. The concept was implemented by the exhibition service company that had already successfully implemented the last two exhibition booth designs. The straightforward approach in the colors anthracite and orange provides plenty of space for the presentation of the various exhibits. Be sure to visit Rösler at the AMB exhibition in Stuttgart or the EuroBlech exhibition in Hanover. Find all exhibition dates on www.rosler.com.

Rösler continues growing

In 2017 Rösler spent more than 10 million Euro for a new plastic media production facility and a new office building. Because of a continued increase in customer demand for Rösler products, management approved an additional expansion phase. Building projects with an approx. investment amount of 35 million Euro are currently in different planning stages.

Construction for the new compound production facility started last fall. And with the foundation of the Rösler Academy in 2016 suitable facilities were needed for the numerous training seminars. The academy offers courses in 19 different fields. They can be booked at www.rosler-academy.com. The Rösler Academy and marketing department will move into a new office and training building by the end of 2018.

The new compound production facility is scheduled to start its operation in spring 2019. Other projects include an expansion of office space for the sales department, expansion of ceramic media production and the expansion of our logistical infrastructure to meet the needs from our increased production capacity.

Rösler supports charitable causes

In July 2017 about 4,500 participants of the Rösler family open house event explored the company premises with great interest. The many attractions for adults and children contributed to a successful and eventful day. No doubt, the laser show was the highlight of the evening! The company covered all the costs for food and drinks, the employees and visitors only paid a small amount towards the overall costs of the event with special chips. Rösler donated the proceeds of 12,000.00 Euro to various charitable institutions.

As in previous years, Rösler also supported the regional project “Helping is fun” in 2017. This charitable project supports families with financial difficulties in the region. Stephan Rösler, managing director of Rösler Oberflächentechnik, generously augmented the numerous contributions by suppliers. This made it possible to present 10,000.00 Euro for needy families to the project founder, Mr. Till Mayer.

Everything changes and nothing remains still! This wisdom expressed by Heraclitus of Ephesus is as relevant today as it was 2,500 years ago. With the introduction of Lean Management within the past months, our company pursues the goal of establishing a lean, constantly learning organization that facilitates the professional development of its employees, as well as the establishment of logical business processes. In today’s competitive, industrial manufacturing market Lean Management is more relevant than ever. With the support of internal and external advisory teams, business processes and procedures were analyzed and subjected a critical review process. The lean concept covers all corporate areas, from product development to sales. In this project Rösler pursues a holistic approach with the goal to interlink the various lean management tools like front loading, shop floor management, value stream mapping, visual management, total productive management, continuous improvement processes and many others.

Like in many situations in our daily life, implemented changes are never perfect right from the start; people must get used to them, and sometimes they must be revised. Currently 12 different internal projects under the Lean Transformation (Rösler Revolution) initiative are in process. These will help us realize our vision of being the world’s best customer-oriented company in the field of surface finishing.
About us

The Rösler Group has been the experts in the field of surface finishing for more than 80 years and offers the most extensive portfolio in the world of mass finishing systems, shot blasting, consumables and services. Renowned companies from a wide range of industrial sectors trust in Rösler products and services. With its 15 subsidiaries and more than 150 sales agencies, the Rösler Group offers an extensive global network that is always close to its customers.

The job of our specialists is to design a system for your finishing process, or a complete production line. You’re in the best hands with us, we will provide support throughout your machines lifetime; from the planning phase, all the way to after sales support and service. Our technology management team works with you to develop the perfect finishing process, precisely tailored to your work pieces.

Our Mission

We are a modern and attractive family owned company active in the field of surface finishing.

„Finding a better way...“ drives us.

Long term, sustainable business development is more important to us than short term profit maximization.

Our Vision

Our customers want to buy from us, because with our team of dedicated employees

- we are the world’s best customer-oriented company in our field
- we deliver the best quality
- we perform the best service
- we are more innovative